

Global Carbon Finance (GLOCAF) model

PMR Technical Workshop on Post-2020 Mitigation Scenarios and Carbon Pricing Modelling

Brasilia, 03 February 2016

Contents

- Introduction
- GLOCAF model overview
- Model inputs
- Top-down and Bottom-up methods
- How GLOCAF works
- Model outputs: Top-down results and Bottom-up results
- Work areas
- GLOCAF limitations
- Conclusions

Introduction

- About 40 different models being used in UK's DECC
- Some standalone (e.g. UK emissions projections)
- Some sitting next to policy colleagues (e.g. GLOCAF model)
- GLOCAF has dedicated analytical support using and developing it
- GLOCAF used to cost targets
- GLOCAF used to model international carbon markets

Number of

24 regions in GLOCAF

GLOCAF region	countries in GLOCAF region
Brazil	1
Canada	1
China	1
EU	28
India	1
Indonesia	1
Japan	1
Mexico	1
Middle East	13
Northern Africa	5
Oceania	9
Rest of Central America	19
Rest of Europe	7
Rest of Former Soviet Union	10
Rest of South America	11
Rest of South Asia	7
Rest of South East Asia	12
Rest of Sub Saharan Africa	45
Russia	1
South Africa	1
South Korea	1
Turkey	1
Ukraine	1
USA	1

Number of

24 regions in GLOCAF

	Number of
GLOCAF region	countries
(Implementing Country Participants)	in GLOCAF
	region
Brazil	1
Canada	1
China	1
EU	28
India	1
Indonesia	1
Japan	1
Mexico	1
Middle East (includes Jordan)	13
Northern Africa (includes Morocco, Tunisia)	5
Oceania	9
Rest of Central America (includes Costa Rica)	19
Rest of Europe	7
Rest of Former Soviet Union (includes Kazakhstan)	10
Rest of South America (includes Chile, Colombia, Peru)	11
Rest of South Asia	7
Rest of South East Asia (includes Thailand, Vietnam)	12
Rest of Sub Saharan Africa	45
Russia	1
South Africa	1
South Korea	1
Turkey	1
Ukraine	1
USA	1

GLOCAF sector	Туре
Agriculture	Energy CO2
Chemical	Energy CO2
Domestic aviation	Energy CO2
International aviation	Energy CO2
Non-Metallic Materials	Energy CO2
Other Industry	Energy CO2
Other transformation	Energy CO2
Other transport	Energy CO2
Power	Energy CO2
Rail transport	Energy CO2
Residential	Energy CO2
Road transport	Energy CO2
Services	Energy CO2
Steel	Energy CO2

е
gases
gases
gases

GLOCAF sector	Туре
CH4 Agriculture	Non-CO2
CH4 Energy & Industry	Non-CO2
CH4 Waste	Non-CO2
HFC	Non-CO2
N2O Agriculture	Non-CO2
N2O Energy & Industry	Non-CO2
N2O Waste	Non-CO2
Other F-gases	Non-CO2

Energy CO2 input data from Enerdata's POLES model

LULUCF gases input data from International Institute for Applied Systems Analysis models Non-CO2 input data from PBL Netherlands Environmental Assessment Agency

model inputs model outputs model data **BAU** emissions finance and carbon flows abatement costs **GLOCAF** global carbon price(s) Excel/VBA based scenario assumptions model that finds level of abatement mitigation commitments most effective way undertaken domestically of meeting commitments carbon market design mitigation costs finance options

model inputs model outputs model data **BAU emissions** finance and carbon flows abatement costs **GLOCAF** global carbon price(s) Excel/VBA based scenario assumptions model that finds level of abatement mitigation commitments most effective way undertaken domestically of meeting commitments carbon market design mitigation costs finance options

Model data: BAU emissions

Model data: marginal abatement cost curves

Model data: marginal abatement cost curves

Model data: abatement options

GLOCAF sector	Туре
Agriculture	Energy CO2
Chemical	Energy CO2
Domestic aviation	Energy CO2
International aviation	Energy CO2
Non-Metallic Materials	Energy CO2
Other Industry	Energy CO2
Other transformation	Energy CO2
Other transport	Energy CO2
Power	Energy CO2
Rail transport	Energy CO2
Residential	Energy CO2
Road transport	Energy CO2
Services	Energy CO2
Steel	Energy CO2

Model data: abatement options

GLOCAF sector	Туре
Agriculture	Energy CO2
Chemical	Energy CO2
Domestic aviation	Energy CO2
International aviation	Energy CO2
Non-Metallic Materials	Energy CO2
Other Industry	Energy CO2
Other transformation	Energy CO2
Other transport	Energy CO2
Power	Energy CO2
Rail transport	Energy CO2
Residential	Energy CO2
Road transport	Energy CO2
Services	Energy CO2
Steel	Energy CO2

GLOCAF sector	Abatement option
International aviation	Biofuels
	Efficiency
	Mobility change
Power	Production
	Fossil fuel switch
	Carbon Capture and Storage
	Energy Efficiency
	Nuclear
	Wind
	Solar
	Biomass
	Other renewables
Road Transport	Biofuels
	Efficiency
	Electrification
	Mobility change

Model data: abatement options

Source: Enerdata POLES model

Department of Energy & Climate Change

Top-down method

16

Top-down method

We may consider many different effort sharing method, which can be based on historic emissions, future emissions, population, or mitigation costs.

Two examples:

Contraction and Convergence method

Convergence from 2020 emissions to equal per capita emission in 2050.

Equal GDP cost method

All country targets cost the same as a percentage of GDP.

Department of Energy & Climate Change

Bottom-up method

INDCs assessed by the Climate Action Tracker	
Brazil	37% for 2025 below 2005
Canada	30% below 2005 levels in 2030
China	peak by 2030 or earlier
EU	40% domestic below 1990 by 2030
Indonesia	29% below BAU by 2030
Japan	26% below 2013 emission levels by 2030
Mexico	22% reduction on 2030 BAU in 2030
Norway	40% below 1990 by 2030
Peru	reduce emissions by 20% of BAU levels by 2030
South Korea	37% below BAU by 2030
Switzerland	50% below 1990 by 2030
Ukraine	40% below 1990 levels by 2030
USA	26% to 28% below 2005

Bottom-up method

INDC	s assessed by the Climate Action Tracker
Brazil	37% for 2025 below 2005
Canada	30% below 2005 levels in 2030
China	peak by 2030 or earlier
EU	40% domestic below 1990 by 2030
Indonesia	29% below BAU by 2030
Japan	26% below 2013 emission levels by 2030
Mexico	22% reduction on 2030 BAU in 2030
Norway	40% below 1990 by 2030
Peru	reduce emissions by 20% of BAU levels by 2030
South Korea	37% below BAU by 2030
Switzerland	50% below 1990 by 2030
Ukraine	40% below 1990 levels by 2030
USA	26% to 28% below 2005

Scenario assumptions: carbon market design

Need to make assumptions about future structure of carbon markets:

Who can trade in 2030?

Does China and S Korea develop their carbon markets independently? Will the EU and Australia be trading in 2030? Will there be a market in maritime emissions?

Any limits on trade in 2030?

What will be the limit on be using credits? 5% of country target can be international credits? 10%?

How efficient are sector markets in 2030?

How efficient are carbon market mechanisms? Are some sectors – such as Power or Agriculture – more likely to lead to successful projects than others?

Model outputs: mitigation costs Top-down method 2 degrees goal using Equal cost effort share approach

■ % cost saving from full trading

Model outputs: mitigation costs Bottom-up method Looking at some example countries

Model outputs: finance flows Bottom-up method Looking at some example countries

Other possible work areas

- Model sectors markets (but need emissions target for each market)
- Introducing a market in international aviation
- Model EU ETS and possible use of sector-specific credits
- Model markets linking look at carbon prices and abatement costs before linking and afterwards

GLOCAF limitations

- GLOCAF is a scenario modelling tool rather than a forecasting tool
- Uncertainty over abatement costs and BAU emissions projections
- Assumes rational decision making (i.e. least cost abatement pursued first which might not always happen in practice)
- Macroeconomic effects, any co-benefits (e.g. local air pollution, health, energy security) or the avoided impacts are not captured by GLOCAF
- GLOCAF only models specific individual years

Some overall conclusions....

- GLOCAF provides insight but must make assumptions
- If using top-down method need to select an effort sharing approach
- If using bottom-up method need to interpret INDCs
- Carbon markets reduce overall cost of meeting mitigation targets
- Carbon markets will result in financial flows

Thank you. Any questions?