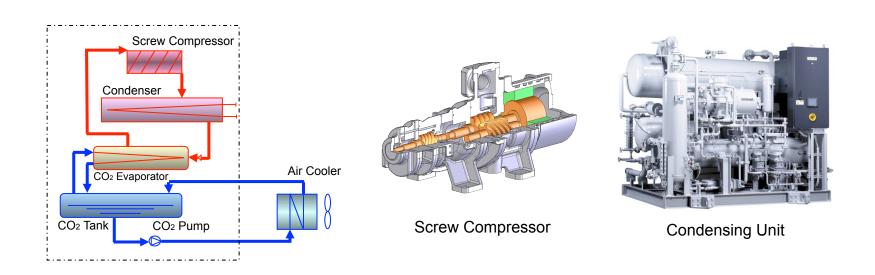
# Recent Development of the JCM

Achieving Net Reductions by Simplifying Monitoring through the JCM methodologies

March 2015
Tsuyoshi Kawakami
Ministry of the Environment, Japan

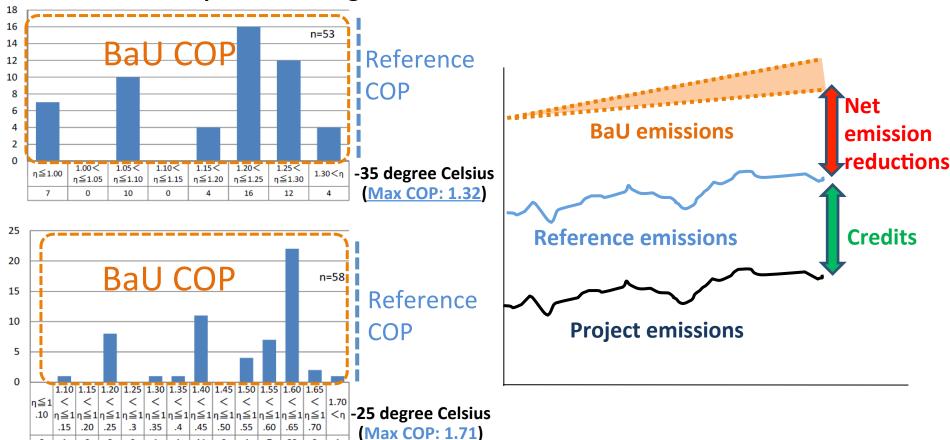
# Approved JCM methodologies


| Country   | Methodology                                                                                                                                   | Sector                 | Public input/<br>comment | Approved<br>Date |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------|------------------|
| Mongolia  | Installation of energy-saving transmission lines in the Mongolian Grid                                                                        | Energy<br>distribution | 4 Feb 14<br>- 18 Feb 14  | 20 Feb 14        |
|           | Replacement and Installation of High Efficiency<br>Heat Only Boiler (HOB) for Hot Water Supply<br>Systems                                     | Energy<br>industries   | 18 Nov 14<br>- 2 Dec 14  | 28 Jan 15        |
| Viet Nam  | Transportation energy efficiency activities by installing digital tachograph systems                                                          | Transport              | 19 Nov 14<br>- 3 Dec 14  | 14 Jan 15        |
|           | Introduction of room air conditioners equipped with inverters to public sector buildings                                                      | Energy<br>demand       | 5 Dec 14<br>- 19 Dec 14  | 14 Jan 15        |
|           | Improving the energy efficiency of commercial buildings by utilization of high efficiency equipment                                           | Energy<br>demand       | 5 Dec 14<br>- 19 Dec 14  | 14 Jan 15        |
| Indonesia | Power Generation by Waste Heat Recovery in Cement Industry                                                                                    | Energy<br>industries   | 1 May 14<br>- 15 May 14  | 19 May 14        |
|           | Energy Saving by Introduction of High Efficiency Centrifugal Chiller                                                                          | Energy<br>demand       | 1 May 14<br>- 15 May 14  | 17 Sep 14        |
|           | Installation of Energy-efficient Refrigerators Using<br>Natural Refrigerant at Food Industry Cold Storage<br>and Frozen Food Processing Plant | Energy<br>demand       | 10 Sep 14<br>- 24 Sep 14 | 30 Oct 14        |
|           | Installation of Inverter-Type Air Conditioning System for Cooling for Grocery Store                                                           | Energy<br>demand       | 10 Sep 14<br>- 24 Sep 14 | 30 Oct 14        |
| Palau     | Displacement of Grid and Captive Genset Electricity by a Small-scale Solar PV System                                                          | Energy<br>industries   | 22 Jan 15<br>- 5 Feb 15  | 20 Feb 15        |

# JCM methodologies under consideration by JCs

| Country   | Methodology                                                                           | Sector        | Public input/<br>comment |
|-----------|---------------------------------------------------------------------------------------|---------------|--------------------------|
| Indonesia | Installation of LED Lighting for Grocery Store                                        | Energy demand | 10 Sep 14<br>- 24 Sep 14 |
|           | GHG emission reductions through optimization of refinery plant operation in Indonesia | Energy demand | 10 Sep 14<br>- 24 Sep 14 |
|           | GHG emission reductions through optimization of boiler operation in Indonesia         | Energy demand | 16 Oct 14<br>- 30 Oct 14 |

### Methodology for High Efficiency Refrigerators Using Natural Refrigerant (1/2)


- High efficient secondary loop cooling system:
  - ✓ Refrigerant: Non-fluorocarbon (primary:NH3, secondary:CO2)
  - ✓ COP: for individual quick freezer more than 1.5
    for cold storage more than 2.0



 The reference emissions are calculated based on the maximum COP of commercially available chillers.

### Methodology for High Efficiency Refrigerators Using Natural Refrigerant (2/2)





- Simplified monitoring: three parameters to be monitored
  - √ Amount of electricity consumed by project refrigerator
  - ✓ Electricity imported from the grid, where applicable
  - ✓ Operating time of captive electricity generator, where applicable


### Methodology for High Efficiency HOB for Hot Water Supply Systems (1/2)

- High efficient HOB (Heat Only Boiler) for hot water supply system:
  - √80% or higher boiler efficiency (catalog value)
  - ✓ feeding coal on the stoker uniformly
  - √ dust collector equipped

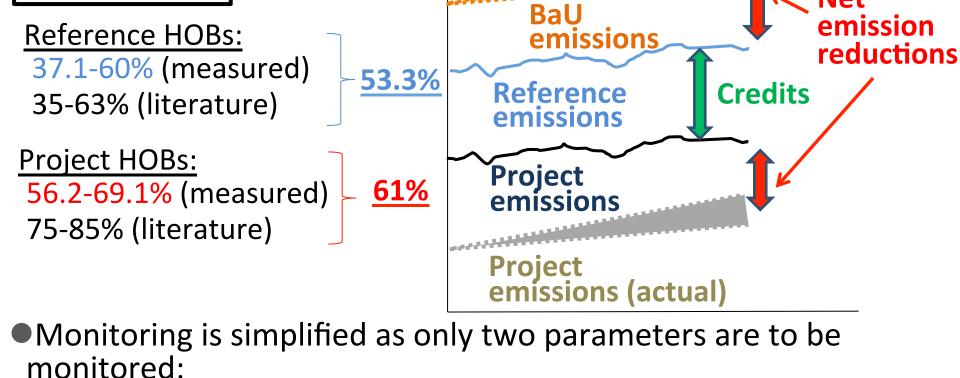
High efficient HOBs







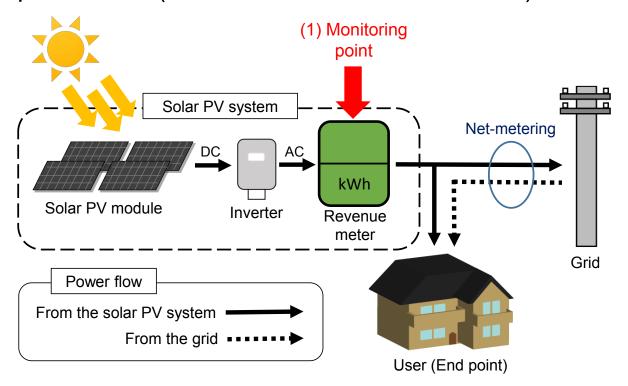





 Efficiency of both reference HOBs and project HOBs are set as default value based upon actual measurement.

### Methodology for High Efficiency HOB for Hot Water Supply Systems (2/2)

- •Net emission reductions by setting default values as :
  - ✓ Higher possible efficiency of reference HOBs
  - ✓ Lower possible efficiency of project HOBs


**Boiler Efficiencies** 



✓ Net heat quantity supplied by the project HOB
 ✓ Total hours of the project HOB operation during the monitoring period

#### Methodology for small-scale solar PV system at commercial facility in Small Island States (1/2)

- Solar PV system to displace grid electricity and/or captive electricity using diesel fuel as power source
- Solar PV system certified with:
  - ✓ Design qualifications (IEC 61215, IEC 61646 or IEC 62108)
  - ✓ Safety qualification (IEC 61730-1 and IEC 61730-2)

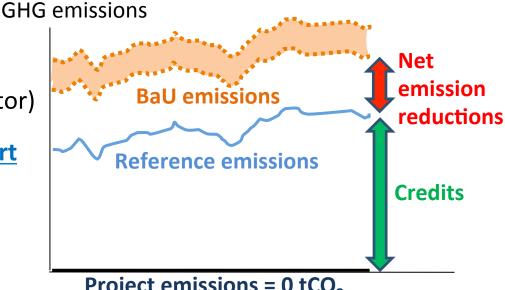


 The quantity of the electricity generated by the project solar PV system and irradiance are monitored for checking the operational status of the installed solar PV system

#### Methodology for small-scale solar PV system at commercial facility in Small Island States (2/2)

- Project emissions are zero
- Reference emissions are calculated from [AC output of solar PV system (monitored value)] X [emission factor (tCO2/MWh)]

### **BaU: Existing diesel generators**


**33-41%** (power generation efficiency)

0.805-0.631 tCO2/MWh (emission factor)

### Reference: Hypothetical state-of-the-art diesel generators:

**49%** (power generation efficiency)

0.533 tCO2/MWh (emission factor)



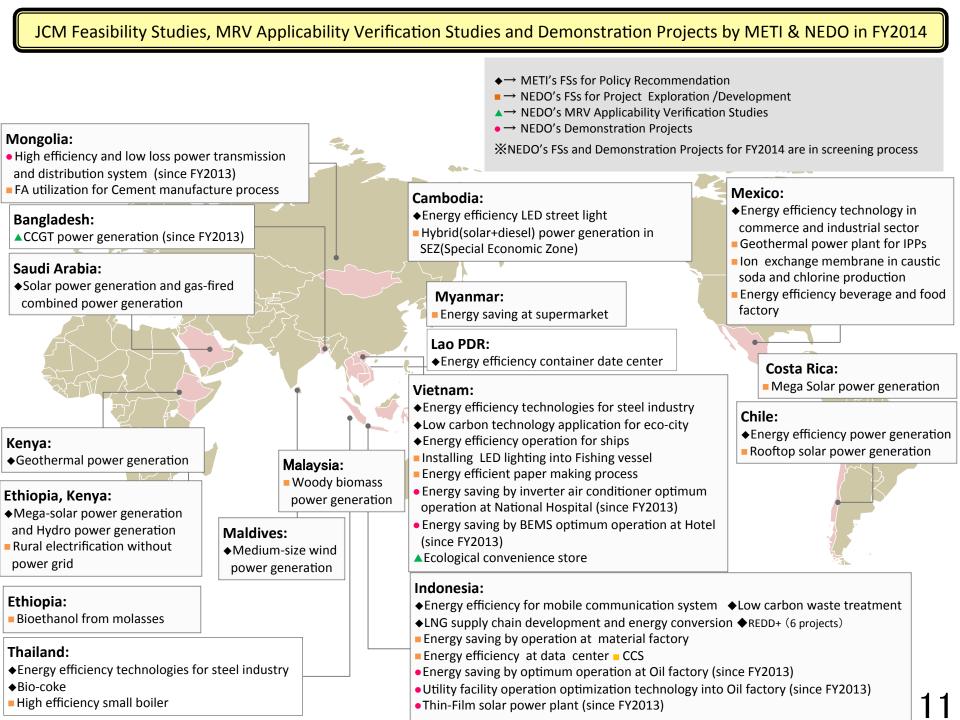
Project emissions = 0 tCO<sub>2</sub>

- The grid emission factor provided by this methodology;
  - ✓ ensure net emission reductions;
  - ✓ <u>eliminates the burden</u> to calculate emission factor by finding out field data;
  - ✓ avoids confusion as to which data vintage should be used when calculating emission reductions;
  - ✓ is applicable in countries where necessary field data are not available;
  - has potential to be applied widely.

## JCM Website: https://www.jcm.go.jp

### **Contents**

- General information page
- •Individual JCM Partner countries-Japan page


### **Function**

- Information sharing to the public, e.g.,
- the JC decisions,
- rules and guidelines,
- methodologies,
- projects,
- call for public inputs/comments,
- status of TPEs, etc.
- •Internal information sharing for the JC members, e.g.,
- File sharing for electric decisions by the JC



Image of the general information page <URL: https://www.jcm.go.jp/>





## JCM Model Projects in 2013 and 2014 by MOEJ

#### Mongolia:

 Upgrading and Installation of Centralized Control System of High-Efficiency Heat Only Boiler (HOB)

#### Bangladesh:

◆Energy Saving for Air Conditioning & Facility Cooling by High Efficiency Centrifugal Chiller (Suburbs of Dhaka)

#### Kenya:

◆Solar Diesel Abatement Projects

#### Maldives:

◆Solar Power on Rooftop of School Building Project

#### Malaysia:

◆PV power generation and relevant monitoring system for the office building

- JFY 2013 (3 countries, 7 projects)
- ♦JFY 2014 (7 countries, 15 projects)

#### Viet Nam:

- ◆Anaerobic Digestion of Organic Waste for Biogas Utilization at Market
- **♦**Eco-driving with the Use of Digital Tachographs
- ◆ Introduction of amorphous high efficiency transformers in power distribution systems

#### Palau:

- Small-Scale Solar Power Plant for Commercial Facilities in Island States Project
- ◆Small-Scale Solar Power Plants for Commercial Facilities Project II
- **♦**Solar PV System for Schools Project

#### Indonesia:

- Energy Saving for Air-Conditioning and Process Cooling at Textile Factory (in Batang city)
- Energy Savings at Convenience Stores
- Energy Efficient Refrigerants to Cold Chain Industry
- Energy Saving by Double Bundle-Type Heat Pump at Beverage Plant
- Energy Saving for Air-Conditioning and Process Cooling at Textile Factory
- **♦**Power Generation by Waste Heat Recovery in Cement Industry
- ◆Solar Power Hybrid System Installation to Existing Base Transceiver Stations in Off-grid Area
- ◆Energy Saving through Introduction of Regenerative Burners to the Aluminum Holding Furnace of the Automotive Components Manufacturer
- ◆Energy Saving for Textile Factory Facility Cooling by High Efficiency Centrifugal Chiller
- ◆Introduction of high efficient Old Corrugated Cartons Process at Paper Factory
- ◆Reducing GHG emission at textile factories by upgrading to airsaving loom